A Simple Machine Language

Sep 22, 2009

The Machine's Architecture

- 16 general-purpose registers
 - numbered 0 through F (in hexadecimal)
- Each register is
 - one byte (8 bits) long
 - assigned an unique four-bit pattern to represent its register number
 - E.g.0000 (0x0) -> register 00100 (0x4) -> register 4

The Machine's Architecture (Cont.)

- Main memory
 - ♦ 256 memory cells
 - Each cell is located by an integer (8 bits)
 - ♦ 0 (0x00) ~ 255 (0xFF)
- Floating-point values are stored in the eight-bit format disscussed in Section 1.7 and summarized in Figure 1.26

The Machine's Language

- Machine language
 - two bytes (16 bits) long
 - op-code field -> leftmost 4 bits
 - operand field -> the remaining 12 bits

Simulator (Java version)

Example

- From Questions & Exercises
 - Suppose the memory cells at addresses B0 to B8 in the machine described in Appendix C contain the (hexadecimal) bit patterns given in the following table:

Address	Contents
В0	13
B1	B8
B2	A3
В3	02
B4	33
B5	B8
В6	C0
В7	00
B8	OF

Example (Cont.)

a. If the program counter starts at B0, what bit pattern is in register number 3 after the first instruction has been executed?

Syntax

[PC] B0 [B0] 13 B8 A3 02 33 B8 C0 00 0F

Load Data

Load Data (Cont.)

The Result of Sub-problem a

Example (Cont.)

b. What bit pattern is in memory cell B8 when the halt instruction is executed?

The Result of Sub-problem b

