CS 3331 Numerical Methods

Lecture 2: Functions of One Variable
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Outline

e Introduction

e Solving nonlinear equations: find x* such that f(z*) = 0.
— Binary search methods: (Bisection, regula falsi)
— Newton-typed methods: (Newton's method, secant method)
— Higher order methods: (Muller's method)

e Accelerating convergence: Aitken’'s A2 method



Introduction



Motivating problem

e How to estimate compound interest rate?

— Example: Suppose a bank loans you 200,000 with com-
pound interest rate. After 10 year, you need to repay
400,000 (principal4interest). Suppose the frequency of

compounding is yearly. How much is the annual percent-
age rate (APR)?

e Equation of the compound interest: 20,000(147)19 = 40, 000.

— How to solve f(r) = (1 4+ )10 -2 =07
—r=Y2-1x7.1773%



Amortized Loan

e Loan repaid in a series of payments for principal and interest.

e Formula: (r: interest-rate, a: payment, n: period)

— Suppose z;. is the debt in the k's period.

2, = A+r)zp 1—-a=04+7%2. o—(14+r)a—a=..

k _
= 20(1 4 1)k —a(l +r) 1

r

— =z is the principal and &, = 0 = zg(14r)"—a2F V=1 — o
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e How to solve f(r) =20(1 4 r)10 — 40+ —1 _ g7



Useful tools from calculus LvF pp.10

e Intermediate value theorem

If f(x) is a continuous function on the interval [a,b],
and f(a) <0< f(b) or f(b) <0 < f(a), then there is a
number ¢ € [a,b] such that f(c¢) = 0.

e [aylor's theorem

If f(z) and all its kth derivatives are continuous on
[a,b], k= 1---n, and f("t1) exists on (a,b), then for
any c € (a,b) and x € [a,b], (£ is between ¢ and z.)
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Solving Nonlinear Equations



Bisection method LVvF pp.52-55

e Binary search on the given interval [a,b].
— Suppose f(a) and f(b) have opposite signs.

— Let m = (a+b)/2. Three things could happen for f(m).

x f(m) =0 = m is the solution.
x f(m) has the same sigh as f(a) = solution in [m,b].

x f(m) has the same sigh as f(b) = solution in [a,m].

e Linear convergence with rate 1/2.



Pros and cons

e Pros

— Easy to implement.
— Guarantee to converge with guaranteed convergent rate.
— No derivative required.

— Cost per iteration (function value evaluation) is very cheap.
e Cons

— Slow convergence.

— Do not work for double roots, like solving (z —1)2 =0



Regula falsi (false position) LvF pp.57-59

e Straight line approximation 4+ intermediate value theorem

e Given two points (a, f(a)), (b, f(b)), a = b, the line equation
f(a) — f(b)
b

L(z) =y = f(b) + (z —b),

and its root, L(s) =0, iss=1b—

a—b
OO

e Use intermediate value theorem to determine z* € [a,s] or
x* € [s, b]



Convergence of regula falsi

Consider a special case: (b, f(b)) is fixed.

e Note [s,b] may not go to zero.
(compare to bisection method.) A

e Change measurement
s —x* _ |(b—s) — (b—x")
a—z*  |(b—a) — (b—a*)]

R N
b= vy — T
o Let m = —f ()

F@) —f@)
s — 2% _ |m(b—a) - (b—a")]
a—2  [(b—a) - (b—a")

<1

e Linear convergence

10



Newton's method LvF pp.66-71

e Approximate f(x) by the tangent line f(zr) + (= — x) f/ ().
e Find the minimum of the square error

min | f(z) — 0 <= d(f(x))*/dw =0

e The minimizer is zjyq1 = zp — J{,((:%

e Convergent conditions

— f(z), f'(z), f"(z) are continuous near z*, and f'(x) # 0.

11
— xq is sufficiently close to z*. max |/ ||]:co — ¥ < 1].

2min | f/
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Convergence of Newton's method LvF pp.70-71

e Taylor expansion: for some n between z* and xy

¥ — 2
F@*) = Fo) + (@ — 2 f o) + &) ey — o

2
" = oy~ @)/ o) - @ =025 s
e Substitute Newton's step z — f(z)/f () = zp41.
* — _ (x 2 f”(ﬂ)
"~z = — (2" —zp) > ()
£ (x*)

e Quadratic convergence with A =

2f"(x*)
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Oscillations in Newton’'s method LvF pp.71

e Solve f(z) =23 —322 42+ 3 =0 with zg = 1.

6 6
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Newton's method for repeated roots LVvF pp.72

e If £* is a repeated root, Newton’'s method converges linearly.

e Newton’'s method can be regarded as a fixed-point iteration.

g(x) x— f(x)/f'(z),
In4+1 — g(xn) = xn — f(af'n)/f/(wn)

— Convergence of fixed-point iteration: LVF pp.22-23.

e Taylor expansion of g(x) about x, near z*

”(é )

Tptr1 = g(2n) = g(«™) + ¢' (@) (xn — 2¥) + (zn — 2*)*.

— Quadratic convergence if ¢’(z*) = 0.
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case 1 If f(z*) is a simple root, (f'(z*) # 0)

N 1 P@F @@ @) 1 4 F@ @) _ f@) ")
g(z) =1 (F@))> = 1-1+" Gy = F@)2

— g (@) =0
case 2 If f(z*) is a repeated root, (f'(z*) = 0)
— Assume f(z) = (z — 2*)2h(z) where h(z*) # O.

= f'(x) = 2(z — z*)h(x) + (z — 2*)?h/(z).

N @) (a=aMh@)
9(2) =T = FE) =T~ @I (e (@)

— Let a(z) = 2h(z) + (z — 2*)R'(x). (we will use that to
simply the proof).



o _ 4 _ (h@)+@—a*)h (z))a(z)—(z—z*)h(z)d (x)
g (37) =1 (a(x))2

— a(a*) = 2h(a*) + (z* =a*)W'(z*) = 2h(z*) # O
N (G R G o L G L G R Gl o L AT Cad)

a(x*)Q

=1-1/2#0.

h(z*) _ h(z¥)

= e T 2n@)

= When z* is a repeated root, convergence is linear.
e How to modify it to restore the quadratic convergence?

— For f(z)=(z —z*)2h(z), let g(z) =z — 2{%‘;)) — ¢/(z*)=0.

— ' _ f(zg)
The algorithm becomes xp41 = xp, — 2f’(:cl;;)




Secant method LvF pp.60-65

e Newton's method requires derivative at each step.
flxg—1)—f(xg)

e f'(z;) can be approximated by PP

. which make

. mq — @
LTI pa ) — f(xk)f(xk)'

e Convergent conditions

— f(=z), f'(x), f"(x) are continuous near z*, and f/(z) # O.

— Initial guesses xq,x1 are sufficiently close to z*.
max(M|xzg—x*|, M|z1—x*|) < 1, where M = max |f"|/2min|f/|
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Convergence of the secant method

o Let ekzazk—az*

eptl = Tpp1—T
Ll_1 — X
=z (@) — o

flzp_1) — f(z)
(z—1 — =*) f(zg) — (2, — 2¥) f(2—1)
flxp—1) — f(xg)
_ ep—1f(wp) —epf(p—1)

flxp_1) — f(zg)
e Using Taylor expansion

) P T epf/ (@) + 21" (2*) /2 + 0(e3)
flap_1) = faFep_1f/ (@) +e2_ f(z*)/2+ O(e3_,)
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= (ep_1 —ep)f'(@®) + (e 1 —eD) f"(*) /2 + O(ep_1)
~ (ep_1 —ep)f'(z")

(We assume e is small enough so that |e;|3 < |ex]|? < |ekl.)

f(zr_1) — f(zg)

erf(rr_1) —ex_1f(xg) = (ex_1ex —exer_1)f (&™) +
(eper_1 —enep_1)f"(x%)/2 + O(ep_1)
~ eper_1(ep_1—ep)f'(x*)/2

e Summarizing above equations

chr1 = er—1f(@g) — epf(xp_1)
f(xp_1) — f(z)
eper—1(ep—1 —ep) f'(x*)/2
(ep—1 —er) f(z*)
ep—1ekf" (x*)

2f/(c")




We want to prove |ex41| = Cleg|®

er_1erf" (")

— Cle|®
2p ) |
Recursively, |ex| = Clei_1|%.
1+af”(az*) Cl—l—a’ ’a f”(m*)
2f"(x*) - 2f'(z*)

2
Coz|€k_1|a —a—1

2
ler_1|* 21 equals to a constant, a? —a —1 = 0.

a=(14++5)/2=1.618

1/a ‘f,,(x*) 0.618

2f"(x*)

Y
Y

@
C= ‘Qf’(w*)

Superlinear convergence with A = ‘

f// *)
2f/ *)

0.618



Muller's method LvF pp.73-77

e Approximate f(x) by a parabola.

e A parabola passes (z1, f(z1)), (z2, f(22)), (23, f(z3)) is
P(x) = f(z3) + co(z — z3) + d1(z — 23)(z — x2),
o = fx1) — f(x3) - f(x2) — f(x3)

C1 —C2
2 — 7d1: .
r1 — I3 rp — I3 r1 — I

e We want to find a solution closer to z3. Let y = x — x3 and
rewrite P(x) as a function of y.

P(x) f(xz3) +co(x —23) +di(xz — 23)(z — x2)

f(xz3) +co(x —23) +di(x — 23)(x — 23 + 23 — 22)
f(x3) + coy + d1y(y + 3 — 2)

f(z3) + (c2 + di(z3 — 22))y + d1y°
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Let s = co> + di1(xz3 — z2). The solution is

—s:l:\/sz—4d1f(:c3) _s:l:\/sz—4d1f(:c3)

— r=ux
’ 2d; 3 2d;
i 2
Let z4 be the solution closer to z3, 4 = x3—8_5'9“(8)\ézl_4d1f(333)
which equals to (in a more stable way)
2f(x3)

T4 = T3 —

s + Sign(s)\/s2 — 4f(x3)dq
x4 iS the a better approximation to x* than zs.

Use (z2, f(z2)), (3, f(%3)), (x4, f(x4)) as next three parame-
ters, and continue the process until converging.



Properties of Muller's method

e No derivative needed
e Can find complex roots
e Fails if f(x1) = f(xo) = f(x3), when z is a repeated root.
e Superlinear convergence, p =~ 1.84, with
A= @121 @),

where 8 = (p — 1)/2. The proof is similar to the secant
method'’s.
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Accelerating convergence
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Aitken's A2 method

e Accelerate the convergence of a linearly convergent sequence.

e Suppose {p;}7>y — p linearly, and (px41 —p)/(px, —p) > 0O for
k > N, where N is some constant. Then the sequence

(Pk+1 — Pr)?
Pk+2 — 2Pk+1 + Pk
converges to p, with better convergence order than pg,

dk — Pk —

im 4 —P
k—oopp — D

= 0.

LVF pp.197, also check last year’'s notes.
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Sketch of the proof

e Since limy_,(pg+1 —p)/(px —p) = A > 0, for large k

Pk+1—P _ DPk+4+2 — D
Pk—P  Pk+1—D

e Expanding the terms vyields

N (Pp+1—Pr)°
DR pE — = q.
Pk4+2 — 2Pk+4+1 + Pk

e Comparing q, —p and p, — p for large k gives

k—oo pr, — P

= 0.

21



