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Vector Space and Linear Transform

♣ Vector space, Subspace, Examples

♣ Null space, Column space, Row space of a matrix

♣ Spanning sets and Linear Independence

♣ Basis and Dimension

♣ Rank of a matrix

♣ Vector norms and matrix norms

♣ Linear transform

• Projection, rotation, reflection

• Gauss transform

• Householder transform (Elementary reflector)

• Jacobi transform (Givens’ rotation)

3 Affine transform with applications
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Definition of A Vector Space

Definition: A vector space V (over R) is a set on which the operations of addition ⊕ and
scalar multiplication � are defined. The set V associated with the operations of addition
and scalar multiplication is said to form a vector space if the following axioms are satisfied.

(A1) x⊕ y = y⊕ x ∀ x,y ∈ V

(A2) (x⊕ y)⊕ z = x⊕ (y ⊕ z) ∀ x,y, z ∈ V

(A3) ∃ 0 ∈ V such that x⊕ 0 = x ∀ x ∈ V

(A4) ∀ x ∈ V , ∃ − x ∈ V such that x⊕ (−x) = 0

(A5) α� (x⊕ y) = (α� x)⊕ (α� y), ∀ α ∈ R and x,y ∈ V

(A6) (α + β)� x = (α� x)⊕ (β � x), ∀ α, β ∈ R and x ∈ V

(A7) (α · β)� x = α� (β � x), ∀ α, β ∈ R and x ∈ V

(A8) 1� x = x for a 1 ∈ R and ∀ x ∈ V

Examples

(1) Rn (over R), in particular, n = 2, 3

(2) C[a, b], for example, C[0,1]

(3) Pn = {anxn + an−1x
n−1 + · · ·+ a1x + a0| aj ∈ R}

(4) Rm×n = the set of all m by n real matrices
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Exercises for Vector Space

1. Mark© if the vector addition and scalar multiplication forms a vector space, otherwise
mark ×.

(×) (a) For (R3,⊕,�), the set of all triples of real numbers [x, y, z] with the operations

[u, v, w]⊕ [x, y, z] = [u + x, v + y, w + z] and α� [x, y, z] = [αx, y, z]

(×) (b) For (R3,⊕,�), the set of all triples of real numbers [x, y, z] with the operations

[u, v, w]⊕ [x, y, z] = [u + x, v + y, w + z] and α� [x, y, z] = [0, 0, 0]

(×) (c) For (R2,⊕,�), the set of all paris of real numbers [x, y] with the operations

[u, v]⊕ [x, y] = [u + x, v + y] and α� [x, y] = [2αx, 2αy]

(×) (d) For (R2,⊕,�), the set of all paris of real numbers [x, y] with the operations

[u, v]⊕ [x, y] = [u + x + 1, v + y + 1] and α� [x, y] = [αx, αy]

(©) (e) For (V,⊕,�), where V = {[1, y]|y ∈ R}, the set of all paris of real numbers
[1, y] with the operations

[1, x]⊕ [1, y] = [1, x + y] and α� [1, y] = [1, αy]

(©) (f) For (V,⊕,�), where V = {x ∈ R|x > 0}, α ∈ R,

x⊕ y = xy and α� x = xα

(©) (g) For (V,⊕,�), where V = {a + bx|a, b ∈ R},

(a + bx)⊕ (c + dx) = (a + c) + (b + d)x and α� (c + dx) = (αc) + (αd)x
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Subspaces of Vector Space

Definition: A subspace U of a vector space V is a nonempty subset satisfying

x⊕ y ∈ U and α� x ∈ U ∀ x,y ∈ U ; α ∈ R

Examples

The set of lower-∆ (upper-∆) matrices

The set of tridiagonal (diagonal, Hessenberg) matrices

Let A ∈ Rm×n, A = [a1, a2, · · · , an], and At = [b1,b2, · · · ,bm], then

Null(A) = {x ∈ Rn| Ax = 0} ⊂ Rn (Nullspace)

R(A) = {∑n
j=1 αjaj| αj ∈ R} ⊂ Rm (Column space)

R(At) = {∑m
i=1 βibi| βi ∈ R} ⊂ Rn (Row space)

Theorem: The system Ax = b is solvable iff the vector b can be expressed as a linear
combination of the columns of A

A = [a1, a2, · · · , an]

Ax = b iff
n

∑

i=1

xiai = b
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Overdetermined, Underdetermined, Homogeneous
Systems

a11x1 + a12x2 + · · · + a1nxn = b1

a21x1 + a22x2 + · · · + a2nxn = b2

· · · · ·

· · · · ·

am1x1 + am2x2 + · · · + amnxn = bm

Definition: A linear system is said to be overdetermined if there are more equations than
unknowns (m > n), underdetermined if m < n, homogeneous if bi = 0, ∀ 1 ≤ i ≤ m.

(A)

x + y = 1

x − y = 3

−x + 2y = −2

(B)

x + y = 3

x − y = 1

2x + y = 5

(C)

x + y = 2

2x + 2y = 4

−x − y = −2

(A) has no solution, (B) has unique solution, (C) has infinitely many solutions

(D)
x + 2y + z = −1

2x + 4y + 2z = 3
(E)

x + 2y + z = 5

2x − y + z = 3

(D) has no solution, (E) has infinitely many solutions



33

Solutions of m Equations in n Unknowns

Theorem: ∀ A ∈ Rm×n, there corresponds a permutation matrix P , a unit lower-∆ matrix
L, and an m× n upper trapezoidal matrix U such that PA = LU

A =



























1 2 3 4

1 2 3 6

2 5 6 8

1 3 4 5



























⇒ PA = P34P23A =



























1 2 3 4

2 5 6 8

1 3 4 5

1 2 3 6



























PA =



























1 2 3 4

2 5 6 8

1 3 4 5

1 2 3 6



























=



























1 0 0 0

2 1 0 0

1 1 1 0

1 0 0 1





















































1 2 3 4

0 1 0 0

0 0 1 1

0 0 0 2



























= LU
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Linear Span

Definition: Let v1,v2, · · · ,vn be vectors in a vector space V . A sum of the form
∑n

i=1 civi,
where c′is are scalars, is called a linear combination of v1,v2, · · · ,vn. The linear span is
the set of all linear combinations of v1,v2, · · · ,vn and is denoted by

span(v1,v2, · · · ,vn)

2 In R3, span(e1, e2) = {[a, b, 0]t| a, b ∈ R}

2 The nullspace could be span([1,−2, 1, 0]t, [−1, 1, 0, 1]t), where

A =







1 1 1 0

2 1 0 1







2 Null(A) = span([1,−2, 1, 0]t, [−1, 1, 0, 1]t)

2 Null(A) = span([1,−2, 1, 0]t, [0,−1, 1, 1]t)

Theorem: If v1,v2, · · · ,vn are elements of a vector space V , span(v1,v2, · · · ,vn) is a
subspace of V .

Proof: Show that au + bv ∈ V, ∀ a, b ∈ R; u,v ∈ V
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Spanning Sets

Definition: The set of {v1,v2, · · · ,vn} is a spanning set for V iff each v ∈ V can be
written as a linear combination of v1,v2, · · · ,vn.

(1) {e1, e2, e3, [1, 2, 3]t} is a spanning set of R3.

(2) {[1, 1, 1]t, [1, 1, 0]t, [1, 0, 0]t} is a spanning set of R3.

(3) {[1, 0, 1]t, [0, 1, 0]t} is not a spanning set of R3.

(4) {[1, 2, 4]t, [2, 1, 3]t, [4,−1, 1]t} is not a spanning set of R3.

(5) span(1, x, x2) = span(1− x2, x + 2, x2), where P2 = {ax2 + bx + c| a, b, c ∈ R}
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Linear Independence

Definition: The vectors v1,v2, · · · ,vn are said to be linearly independent if
∑n

i=1 civi = 0
implies that ci = 0 for 1 ≤ i ≤ n. Otherwise, they are said to be linearly dependent.

α







1

1





 + β







1

2





 =







0

0





 ⇒ α = β = 0

Let

A =

















3 4 2

0 1 5

0 0 3

















, B =

















1 3 3 2

2 6 9 5

−1 −3 3 0

















, C =

















1 2

2 4

4 8

















(1) The column vectors of A are linearly independent.

(2) The column vectors of B are linearly dependent.

(3) The column vectors of C are linearly dependent.

Theorem: A set of n vectors in Rm must be linearly dependent if n > m
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Basis and Dimension

Definition: A basis for a vector space is a set of vectors satisfying two properties: (1) it
is linearly independent, (2) it spans the vector space.

• {e1, e2} is not a basis for R3 since span(e1, e2) 6= R3

• The vectors [1, 0]t, [0, 1]t, [2, 1]t spans R2 but are not linearly independent so it is not a
basis for R2

Definition: Any two bases for a vector space V contain the same number of vectors. This
number, shared by all bases and expresses the number of freedom of the space, is called
the dimension of V.

Theorem: Suppose that v1,v2, · · · ,vm and w1,w2, · · · ,wn are both bases for the same
vector space S, then m = n.

Theorem: Any linearly independent set in a vector space V can be extended to a basis
by adding more vectors if necessaary. Any spanning set in V can be reduced to a basis by
discarding vectors if necessaary.

Example: Let A ∈ R64×17 be a matrix of rank 11.

(1) 6 = (17− 11) independent vectors x satisfy Ax = 0

(2) 53 = (64− 11) independent vectors y satisfy Aty = 0
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The Rank of A Matrix

2 The rank of a matrix A ∈ Rm×n can be defined as the number of linear independent
columns. In Matlab command:

rank(A)

.

A =

















1 2 3 −2

2 −1 1 1

1 1 2 −1

















Suppose the Gaussian elimination reduces Ax=b to Ux=c with r pivots, i.e., the last
m − r rows are zero. Then, there is a solution only if the last m − r components of c
are also zero. If m = r, there is always a solution. The general solution is the sum of a
particular solution (with all free variables zero) and a homogeneous solution (with n − r
free variables as independent parameters). If r = n, there are no free variables and the
nullspace contains only x=0. The number r is called the rank of matrix A.

Suppose xp satisfies Axp = b and xh satisfies Axh = 0

Then xg = xp + xh satisfies Axg = Axp + Axh = b + 0 = b

















1 3 3 2

2 6 9 5

−1 −3 3 0











































u

v

w

y



























=

















1

5

5

































1 3 3 2

0 0 3 1

0 0 0 0











































u

v

w

y



























=

















1

3

0
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Four Fundamental Subspaces from a Matrix

A =

















1 3 3 2

2 6 9 5

−1 −3 3 0

















⇒ U =

















1 3 3 2

0 0 1 1/3

0 0 0 0

















⇒ E =

















1 3 0 1

0 0 1 1/3

0 0 0 0

















matrix ⇒ row echelon form ⇒ reduced row echelon form

♣ Fundamental Theorem of Linear Algebra: Let A ∈ Rm×n have rank r,

(1) R(A): the column space of A, dim(R(A)) = r

(2) N(A): the nullspace of A, dim(N(A)) = n− r

(3) R(At): the row space of A (the column space of At), dim(R(At)) = r

(4) N(At): the left nullspace of A (the column space of At), dim(N(At)) = m− r

• N(A) = {x| Ax = 0}
• R(A) = {∑n

j=1 tjaj| A = [a1, a2, · · · , an]}

The row space of A has the same dimension r as the row space of U because R(At) =
R(U t). The nullspace N(A) has dimension n− r.

(1) dim(R(A)) + dim(N(A)) = r + (n− r) = n

(2) dim(R(At)) + dim(N(At)) = r + (m− r) = m

Example: A ∈ R3×4

A =

















1 2 2 1

0 1 1 0

1 0 0 1

















⇒ U =

















1 2 2 1

0 1 1 0

0 0 0 0

















⇒

dim(R(A)) = 2

dim(N(A)) = 4− 2

dim(R(At)) = 2

dim(N(At)) = 3− 2
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Vector Norms

Definition: A vector norm on Rn is a function

τ : Rn → R+ = {x ≥ 0| x ∈ R}

that satisfies

(1) τ(x) > 0 ∀ x 6= 0, τ(0) = 0

(2) τ(cx) = |c|τ(x) ∀ c ∈ R, x ∈ Rn

(3) τ(x + y) ≤ τ(x) + τ(y) ∀ x,y ∈ Rn

Hölder norm (p-norm) ‖x‖p = (
∑n

i=1 |xi|p)1/p for p ≥ 1.

(p=1) ‖x‖1 =
∑n

i=1 |xi| (Mahattan or City-block distance)

(p=2) ‖x‖2 = (
∑n

i=1 |xi|2)1/2
(Euclidean distance)

(p=∞) ‖x‖∞ = max1≤i≤n{|xi|} (∞-norm)
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Matrix Norms

Definition: A matrix norm on Rm×n is a function

τ : Rm×n → R+ = {x ≥ 0| x ∈ R}

that satisfies

(1) τ(A) > 0 ∀ A 6= O, τ(O) = 0

(2) τ(cA) = |c|τ(A) ∀ c ∈ R, A ∈ Rm×n

(3) τ(A + B) ≤ τ(A) + τ(B) ∀ A, B ∈ Rm×n

Consistency Property: τ(AB) ≤ τ(A)τ(B) ∀ A, B

(a) τ(A) = max{|aij| | 1 ≤ i ≤ m, 1 ≤ j ≤ n}

(b) ‖A‖F =
[

∑m
i=1

∑n
j=1 a2

ij

]1/2
(Fröbenius norm)

Subordinate Matrix Norm: ‖A‖ = max‖x‖6=0{‖Ax‖/‖x‖}

(1) If A ∈ Rm×n, then ‖A‖1 = max1≤j≤n (
∑m

i=1 |aij|)

(2) If A ∈ Rm×n, then ‖A‖∞ = max1≤i≤m

(

∑n
j=1 |aij|

)

(3) Let A ∈ Rn×n be real symmetric, then ‖A‖2 = max1≤i≤n|λi|, where λi ∈ λ(A)
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Linear Transformation

Definition: A mapping L from a vector space V to a vector space W is said to be a linear
transform (transformation) or a linear operator if

L((α�V v1)⊕V (β �V v2)) = (α�W L(v1))⊕W (β �W L(v2)), ∀ α, β ∈ R, v1,v2 ∈ V

Examples: Projection, Scaling, Rotation, Reflection on V = R2

(a) L(x) = utx, for u ∈ V

(b) L(x) = sx, for s ∈ R

(c) L(x) = Rθx, where Rθ =







cos θ − sin θ

sin θ cos θ







(d) L(x) = y, where y1 = −x1 and y2 = x2

(e) L(f) = F , where f ∈ C[a, b] and F (x) =
∫ x
a f(t)dt

(f) L(f) = f ′, where f ∈ C1[a, b] and f ′(x) = d
dx

f(x)

(g) L(x) = Ax, where x ∈ Rn, A ∈ Rm×n

P =







1 0

0 1





 , Q =







1 0

0 −1





 , R =







0 −1

1 0
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Image and Kernel

Let L : V → W be a linear transfrom, and let S ⊂ V be a subspace of V.

The kernel of L, denoted by Ker(L), is defined by

Ker(L) = {v ∈ V | L(v) = 0}

The image of S under L, denoted by L(S), is defined by

L(S) = {w ∈ W | w = L(v) for some v ∈ S}

Theorem: Let L : V → W be a linear transfrom, and let S ⊂ V be a subspace of V,
then

(a) Ker(L) is a subspace of V

(b) L(S) is a subspace of W
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Changing Coordinates in R2

{e1, e2} ⇒ {v1,v2}

Any vector in w ∈ R2 can be expressed as w = xe1 + ye2 = [x, y]t, suppose that we
want to express w as a linear combination of v1 and v2 as w = x′v1 + y′v2 = [x′, y′]t.
What are {x, y} and {x′, y′} related?







x

y






= xe1 + ye2 = x′v1 + y′v2 = [v1,v2]







x′

y′







Then






x′

y′





 = [v1,v2]
−1







x

y







Example: v1 = [1, 1]t, v2 = [−1, 1]t, then

[v1,v2] =







1 −1

1 1





 ⇒ [v1,v2]
−1 =







1
2

1
2

−1
2

1
2
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Gauss Transform

Define an elementary matrix as

Eik(r) = I − reie
t
k, i > k ⇒ Eik(r)

−1 = I + reie
t
k

A Gauss transform is a matrix of the form

k+1
∏

i=n

Eik = EnkEn−1,k · · ·Ek+1,k

which can annihilate the components of a vector x after index k.

Examples

G = E31(−1)E21(2) =

















1 0 0

−2 1 0

1 0 1

















, x =

















2

4

−2

















⇒ Gx =

















2

0

0
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Householder Transform (Elementary Reflector)

H = I − 2uut, where u ∈ Rn with ‖u‖2 = 1

H t = H and H−1 = H

Let x = [3, 1, 5, 1]t, then ‖x‖2 =
√

32 + 12 + 52 + 12 = 6.

Define v = x + ‖x‖2e1, and let u = v/‖v‖2, then

H = I − 2uut =
1
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−27 −9 −45 −9

−9 53 −5 −1

−45 −5 29 −5

−9 −1 −5 53



























, and Hx =



























−6

0

0

0
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Jacobi Transform (Givens’ Rotation)

J(i, k; θ) =























































1 · · · · · 0

0 · · · · · 0

0 · c · −s · 0

· · · · · · ·

0 · s · c · 0

0 · · · · · 0

· · 0 · 0 · 1























































Jhh = 1 if h 6= i or h 6= k, where i < k

Jii = Jkk = c = cos θ

Jki = s = sin θ, Jik = −s = − sin θ

Let x,y ∈ Rn, then y = J(i, k; θ)x implies that

yi = cxi − sxk

yk = sxi + cxk

c = xi√
x2

i
+x2

k

, s = −xk√
x2

i
+x2

k

,

x =



























1

2

3

4



























,







cos θ

sin θ





 =







1/
√

5

−2/
√

5





 , then J(2, 4; θ)x =



























1

√
20

3

0
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Affine Transform with Applications

y = Ax + t ⇒







xn+1

yn+1





 =







ai bi

ci di













xn

yn





 +







ei

fi







w a b c d e f |ad− bc|
1 0 0 0 0.16 0 0 0.01
2 0.85 0.04 -0.04 0.85 0 1.60 0.85
3 0.20 -0.26 0.23 0.22 0 1.60 0.07
4 -0.15 0.28 0.26 0.24 0 0.44 0.07

Table 1: An IFS consisting of 4 affine transforms for Fern



49

Textures Generated by Fractal Models

Fractal models used to generate such textures as ferns, Sierpinski triangles, and snowflakes
have recently received attention in many image compression field. Synthesis is based on
the iterated function system (IFS) codes [1,2,3], which are nothing but a set of affine trans-
formations. Let A ∈ R2×2 and t ∈ R2. An affine transform on x ∈ R2 is defined as Ax+ t.

To describe the algorithm, we denote Ai =

[

ai bi

ci di

]

, with pi = |aidi− bici| 6= 0, and let ti

denote

[

ei

fi

]

. An algorithm based on IFS codes with K affine transforms is listed below.

Experiments conducted using two sets of affine transformations to generate textures are
given. The parameters of this fractal model are given in Tables 1 and 2, respectively. Two
such synthesized textures are shown in the following Figure.

Table 1. IFS codes for a fern

i ai bi ci di ei fi

1 0 0 0 0.16 0 0
2 0.85 0.04 -0.04 0.85 0 1.60
3 0.20 -0.26 0.23 0.22 0 1.60
4 -0.15 0.28 0.26 0.24 0 0.44

Table 2. IFS codes for Sierpinski triangles

i ai bi ci di ei fi

1 0.5 0 0 0.5 0 0
2 0.5 0 0 0.5 1.0 0
3 0.5 0 0 0.5 0.5 0.5
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(a) (b)

Figure 1: Textures synthesized using IFS codes.

Fractal Generating Algorithm

(1) Set m=0 and randomly pick up an initial point x(0) ∈ R2.

(2) Select {Aj, tj} according to the probability distribution of {rj, 1 ≤ j ≤ K}, where
rj = pj/

∑K
i=1 pi for 1 ≤ j ≤ K.

(3) x(m+1) ←− Ajx
(m) + tj.

(4) m ←− m + 1.

(5) Repeat steps 2, 3, 4 until ”convergence,” for example, m = 1000, is achieved.

(6) Plot {x(i)} for i = L to 1000, say L=100.

Convergence of this algorithm was studied by Barnsley [1], and Chu and Chen [3]. An
IFS code consisting of two to five contractive affine transforms has been suggested [2,3]
which generates self-similar images.
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